Binary to Decimal

Biner ke Desimal adalah proses mengubah bilangan biner (basis-2) menjadi representasi desimal (basis-10) yang sesuai. Bilangan biner digunakan dalam komputasi dan elektronik digital karena mewakili nilai menggunakan dua digit: 0 dan 1. Sebaliknya, desimal adalah sistem bilangan standar yang digunakan dalam kehidupan sehari-hari, yang didasarkan pada 10 digit (0-9). Mengonversi dari biner ke desimal memungkinkan kita menafsirkan data biner dalam format yang lebih familiar.

Binary to Decimal is the process of converting a binary (base-2) number into its corresponding decimal (base-10) representation. Binary numbers are used in computing and digital electronics because they represent values using two digits: 0 and 1. Decimal, on the other hand, is the standard number system used in everyday life, which is based on 10 digits (0-9). Converting from binary to decimal allows us to interpret binary data in a more familiar format.

How It Works:

  1. Start from the rightmost digit: Each binary digit (bit) represents a power of 2, starting from 202^0 for the rightmost digit and increasing by 1 as you move to the left.
  2. Multiply each binary digit by 2 raised to the power of its position: The position starts at 0 for the rightmost digit.
  3. Sum the results: Add up all the products to get the decimal equivalent.

Example of Binary to Decimal Conversion:

  • Binary: 1101
  1. Assign powers of 2 to each digit:

    • The rightmost digit represents 202^0
    • The next digit to the left represents 212^1
    • Then 222^2
    • Then 232^3
  2. Convert binary digits to powers of 2:

    • 1 × 23=1×8=82^3 = 1 × 8 = 8
    • 1 × 22=1×4=42^2 = 1 × 4 = 4
    • 0 × 21=0×2=02^1 = 0 × 2 = 0
    • 1 × 20=1×1=12^0 = 1 × 1 = 1
  3. Sum the results:

    • 8 + 4 + 0 + 1 = 13

So, the binary number 1101 is equivalent to the decimal number 13.

Example 2:

  • Binary: 10101
  1. Assign powers of 2 to each digit:

    • 242^4 for the leftmost digit
    • 232^3
    • 222^2
    • 212^1
    • 202^0
  2. Convert binary digits to powers of 2:

    • 1 × 24=1×16=162^4 = 1 × 16 = 16
    • 0 × 23=0×8=02^3 = 0 × 8 = 0
    • 1 × 22=1×4=42^2 = 1 × 4 = 4
    • 0 × 21=0×2=02^1 = 0 × 2 = 0
    • 1 × 20=1×1=12^0 = 1 × 1 = 1
  3. Sum the results:

    • 16 + 0 + 4 + 0 + 1 = 21

So, the binary number 10101 is equivalent to the decimal number 21.

Steps of Conversion:

  1. Step 1: Write down the binary number.
  2. Step 2: Assign each binary digit (bit) a position, starting from 0 on the right.
  3. Step 3: Multiply each bit by 2n2^n, where nn is the position of the bit.
  4. Step 4: Sum all the results to get the decimal number.

Common Uses of Binary to Decimal Conversion:

  1. Computer Systems: Binary is the fundamental number system used in computer architecture and digital electronics. Converting binary to decimal helps understand the data being processed or stored.

  2. Programming and Debugging: When working with low-level operations or binary data in programming, converting binary to decimal helps with debugging or interpreting the results.

  3. Networking and Data Representation: In networking, IP addresses and other data are often represented in binary. Converting binary to decimal helps with analysis and understanding.

  4. Mathematics and Education: In education, learning how to convert binary to decimal is an important step in understanding number systems and binary arithmetic.

Why Use Binary to Decimal Conversion?

  • Interpretation: Converting binary to decimal makes the binary data readable and interpretable in the decimal number system.
  • Data Processing: Binary numbers are often used in computing, but decimal numbers are easier for humans to understand and work with.
  • Compatibility: Many systems or applications may require decimal numbers for input, calculations, or output, so converting binary data to decimal ensures compatibility.

Binary to Decimal Table for Reference:

Here are a few examples of binary numbers and their decimal equivalents:

  • 101 (binary) = 5 (decimal)
  • 1110 (binary) = 14 (decimal)
  • 10011 (binary) = 19 (decimal)

Binary to Decimal converters are available in online tools, programming languages, and software applications, making it easy to convert binary numbers into decimal for a variety of practical uses.


Avatar

Codebee Co., Ltd.

Development Team

Nikmati hal-hal kecil dalam hidup. Untuk suatu hari, Anda mungkin melihat ke belakang dan menyadari bahwa itu adalah hal yang besar. Banyak kegagalan hidup yang disebabkan oleh orang-orang yang tidak menyadari betapa dekatnya mereka dengan kesuksesan ketika mereka menyerah.

Cookie
Kami peduli dengan data Anda dan ingin menggunakan cookie untuk meningkatkan pengalaman Anda.